A further extension of the extended Riemann–Liouville fractional derivative operator
نویسندگان
چکیده
منابع مشابه
Symmetries and exact solutions of the time fractional Harry-Dym equation with RiemannLiouville derivative
In this paper, group analysis of the time fractional Harry-Dym equation with Riemann– Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equationunder study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invarian...
متن کاملOn a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملON GENERALIZED k-FRACTIONAL DERIVATIVE OPERATOR
The main objective of this paper is to introduce k-fractional derivative operator by using the definition of k-beta function. We establish some results related to the newly defined fractional operator such as Mellin transform and relations to khypergeometric and k-Appell’s functions. Also, we investigate the k-fractional derivative of k-Mittag-Leffler and Wright hypergeometric functions.
متن کاملAn extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative
Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...
متن کاملOperator of fractional derivative in the complex plane
The paper deals with fractional derivative introduced by means of Fourier transform. The explicit form of the kernel of general derivative operator acting on the functions analytic on a curve in complex plane is deduced and the correspondence with some well known approaches is shown. In particular it is shown how the uniqueness of the operation depends on the derivative order type (integer, rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2018
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1805-139